Chemistry Letters 1995 571

Synthesis and X-Ray Structure of 1,8-Bis(phenyltelluro)naphthalene and Its Peri Tellurium-Tellurium Interaction

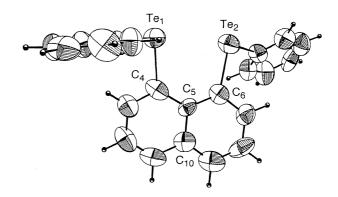
Hisashi Fujihara,*† Hideya Ishitani, Yutaka Takaguchi, and Naomichi Furukawa*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

†Environmental Science Research Institute, Kinki University, Kowakae, Higashi-Osaka 577

(Received April 11, 1995)

New 1,8-diaryl and dialkyl substituted ditelluronaphthalenes, 1,8-bis(phenyltelluro)naphthalene (1) and 1,8-bis(butyltelluro)naphthalene, have been synthesized. The cyclic voltammogram of 1 showed the reversible electrochemical oxidation with remarkably low oxidation potential. The peri telluroniotellurenyl interaction in the telluronium cation of 1 was identified by 125Te NMR spectroscopy.


Although the transannular interaction or bond formation (e.g., dication) between heteroatoms in medium-sized heterocyclic compounds containing sulfur and/or selenium atoms has been studied, ¹ such behavior by tellurium atom has received less attention. We previously reported the first isolation of tetraalkyl substituted ditelluride dication salt of 1,5-ditelluracyclooctane. ² We have now made 1,8-bis(phenyltelluro)naphthalene (1) to study the peri tellurium-tellurium interaction in its oxidized species, since there is no report concerning the properties of 1,8-ditelluronaphthalenes. This paper describes the synthesis of 1 and the first observation of the peri tellurium-tellurium interaction in electrochemical oxidation and in concentrated sulfuric acid, together with the peri interaction between telluronio and tellurenyl groups in the telluronium salt of 1.

The bis-telluride 1 was synthesized as follows (Scheme 1).³ A solution of 1,8-dilithionaphthalene was prepared by treating 1,8-diiodonaphthalene ($\mathbf{6}$)⁴ (1.51 g, 4.0 mmol) with BuLi (7.5 mL, 12.0 mmol; 1.61 M in hexane) in anhydrous THF (100 mL) at -78 °C under an Ar atmosphere. To this lithium reagent was added a solution of PhTeI (8.0 mmol) prepared from PhTeTePh and I₂ in anhydrous THF (25 mL). The mixture was stirred for 12 h at -20 °C. After the usual work-up, the crude product was purified by silica-gel column chromatography (eluent, hexane-CCl₄) to give 1 in 21% yield.⁵

$$\begin{array}{c} \text{i) BuLi} \\ \text{ii) PhTel} \\ \text{or } (\text{BuTe})_2 \\ \text{1} : R = \text{Ph} \\ \text{2} : R = \text{Bu} \\ \\ \text{Scheme 1}. \\ \end{array}$$

1,8-Bis(butyltelluro)naphthalene (2) was prepared by the similar procedures as the telluride 1 using dibutylditelluride, (BuTe)₂.⁵ 1-Phenyltelluronaphthalene (3) was obtained from the reaction of 1-naphthylmagnesium bromide with PhTeI (Scheme 1).⁵

The X-ray crystallographic analysis of 1 indicates the following characteristic properties (Figure 1).⁶ The peri Te···Te contact is 3.29 Å which is remarkably shorter than the sum of the van der Waals radii (4.40 Å) of tellurium. The Te-Te nonbonded distance here is unusually short. The naphthalene ring is twisted about the C(5)-C(10) axis. The X-ray data suggest that it may have interesting chemical properties.

Figure 1. The crystal structure of bis-telluride **1.** Selected bond lengths (Å) and angles (deg): Te(1)-C(4) 2.14(1), Te(2)-C(6) 2.14(2), C(5)-C(6) 1.41(2), Te(1)-C(4)-C(5) 123.(1), Te(2)-C(6)-C(5) 124.(1), C(4)-C(5)-C(6) 128.(1). Selected torsional angles (deg): Te(1)-C(4)-C(5)-C(6) -12.0, C(4)-C(5)-C(6)-Te(2) -16.2.

The bis-telluride 1 was subjected to electrochemical oxidation by cyclic voltammetry (CV), since little is known about the electrochemical behavior of tellurides. When the cyclic voltammogram of 1 was measured in CH₃CN-0.1 M NaClO₄ with a glassy-carbon working electrode and Ag/0.01 M AgNO₃ in CH₃CN as a reference electrode (scan rate; 300 mV/s), one reversible oxidation peak appeared at the oxidation potential, +0.16 V.⁷ The latter is lower than those of the mono-telluride 3 (Ep = +0.55 V) and diphenyltelluride, PhTePh (Ep = +0.56 V)which showed an irreversible oxidation wave.8 Normally tellurides having alkyl and/or aryl groups show irreversible redox behavior. This facile oxidation and the electrochemically reversible oxidation of 1 are attributed to the destabilization of 1 by peri lone pair-lone pair repulsion and the stabilization of the oxidized species by neighboring-tellurium participation.

The bis-telluride 1 was readily oxidized electrochemically, it was thus treated with concd H_2SO_4 as an oxidant. Specifically, the solution of 1 in concd D_2SO_4 was analyzed by ^{125}Te NMR spectroscopy. The ^{125}Te NMR spectrum of 1 in CDCl₃ shows a single peak at 617 ppm (relative to Me_2Te), while the D_2SO_4 solution of 1 shows a single peak at 964 ppm. This is a remarkable downfield shift, consistent with a dicationic structure 4.

Interestingly, the telluronium cation 5 showed the peri interaction between telluronio-tellurenyl groups as evidenced by its $^{125}\mathrm{Te}$ NMR spectral data. 11 The proton-decoupled $^{125}\mathrm{Te}$ NMR spectrum of 5 in CDCl3 exhibits two peaks at 557 ppm (Te) and at 656 ppm (Te+); particularly, each peak shows two clearly resolved satellite peaks due to the $^{125}\mathrm{Te}$ - $^{125}\mathrm{Te}$ coupling (large coupling constant of $J_{\mathrm{Te-Te}}=1093$ Hz) about each central peak. This is the first observation of $^{125}\mathrm{Te}$ satellite due to the interaction between telluronio and tellurenyl groups. 12

This work was supported in part by the Grant-in-Aid for Scientific Research No. 06226212 from the Ministry of Education, Science and Culture, Japan.

References and Notes

- H. Fujihara and N. Furukawa, J. Mol. Struct. (Theochem), 186, 261 (1989); H. Fujihara, R. Akaishi, T. Erata, and N. Furukawa, J. Chem. Soc., Chem. Commun., 1989, 1789.
- 2 H. Fujihara, T. Ninoi, R. Akaishi, T. Erata, and N. Furukawa, *Tetrahedron Lett.*, **32**, 4537 (1991).
- It was very difficult to prepare the 1,8-bis(alkyl or aryltelluro)naphthalenes; e.g., 1,8-bis(methyltelluro)naphthalene was not obtained from the reaction of naphtho[1,8-c,d]-1,2-ditellurole with methyllithium: J. Meinwald, D. Dauplaise, F. Wudl, and J. J. Hauser, J. Am. Chem. Soc., 99, 255 (1977).
- 4 H. O. House, D. G. Koepsell, and W. J. Campbell, J. Org. Chem., 37, 1003 (1972).

- 1: mp 114-115 °C; ¹H NMR (CDCl₃) δ 7.09-7.21 (m, 8H), 7.55-7.58 (m, 4H), 7.66-7.70 (m, 2H), 8.02-8.05 (m, 2H); ¹³C NMR (CDCl₃) δ 119.8, 123.8, 126.4, 127.8, 129.4, 130.2, 135.4, 137.3, 140.1, 141.5. Anal. Found: C, 49.07; H, 2.94%. Calcd for C₂₂H₁₆Te₂: C, 49.34; H, 3.01%. **2**: liquid; 1 H NMR (CDCl₃) δ 0.74 (t, J=7.5 Hz, 6H), 1.23 (sext, J=7.5 Hz, 4H), 1.54 (quint, J=7.5Hz, 4H), 2.61 (t, J=7.5 Hz, 4H), 7.15 (t, J=7.4 Hz, 2H), 7.61 (d, J=7.4 Hz, 2H), 8.02 (d, J=7.4 Hz, 2H); ¹³C NMR (CDCl₃) & 13.4, 17.6, 25.1, 32.5, 118.2, 126.1, 129.5, 134.6, 139.9, 141.3; ¹²⁵Te NMR (CDCl₃) δ 409; FAB-MS, m/z 496 (M⁺). **3**: liquid; ¹H NMR (CDCl₃) δ 6.98-7.17 (m, 4H), 7.34-7.38 (m, 2H), 7.51-7.55 (m, 2H), 7.64-7.70 (m, 2H), 7.91-7.94 (m, 1H), 8.13-8.17 (m, 1H); ¹³C NMR (CDCl₃) & 114.8, 117.8, 125.7, 126.1, 126.4, 126.8, 127.5, 128.6, 129.3, 131.6, 133.5, 135.7, 137.2, 138.6; ¹²⁵Te NMR (CDCl₃) δ 568; MS, m/z 334 (M⁺). Found: C, 57.95; H, 3.56%. Calcd for C₁₆H₁₂Te: C, 57.91; H, 3.64%.
- 6 Crystal data for 1: $C_{22}H_{16}Te_2$, monoclinic, space group P21/c, a=12.579(7), b=11.252(5), c=14.601(4) Å, $\beta=112.17(3)^{\circ}$, V=1913.8 Å³, Z=4, D=1.86 g/cm³, Mo K α radiation ($\lambda=0.71073$ Å), CAD4 diffractometer, 1831 with $I>3\sigma(I)$. The structure was solved by direct methods and refined anisotropically by full-matrix least squares using the MolEN program package. The final R value was 0.056.
- 7 The electrochemical property of 2 could not be studied, since 2 was insoluble in CH₃CN.
- 8 1,8-Bis(methylthio)naphthalene as a sulfur analogue of 1 showed the irreversible oxidation potential, Ep = +0.70 V:
 R. S. Glass, S. W. Andruski, J. L. Broeker, H. Firouzabadi, L. K. Steffen, and G. S. Wilson, J. Am. Chem. Soc., 111, 4036 (1989).
- A. J. Bard, A. Ledwith, and H. J. Shine, Adv. Phys. Org. Chem., 12, 155 (1976).
- 10 **4**: 1 H NMR (D₂SO₄) δ 6.25 (d, J=7.6 Hz, 4H), 6.63 (t, J=7.6 Hz, 4H), 6.91 (t, J=7.6 Hz, 2H), 7.55 (t, J=7.8 Hz, 2H), 7.71 (d, J=7.8 Hz, 2H), 7.98 (d, J=7.8 Hz, 2H); 13 C NMR (D₂SO₄) δ 121.5, 123.9, 132.8, 134.3, 137.1, 137.8, 138.3, 142.4, 144.7, 146.9.
- 11 Treatment of **1** with 1 equiv of CF₃SO₃CH₃ (TfOMe) gave **5** (77%). **5**: mp 158-160 °C; 1 H NMR (CDCl₃) $^{\delta}$ 2.81 (s, 3H), 7.11-7.17 (m, 5H), 7.36-7.59 (m, 7H), 7.84-7.87 (m, 1H), 8.07-8.14 (m, 2H), 8.54-8.57 (m, 1H); 13 C NMR (CDCl₃) $^{\delta}$ 18.4, 113.5, 117.9, 122.6, 123.3, 126.9, 127.6, 127.8, 128.2, 130.0, 130.6, 131.6, 133.0, 133.6, 133.9, 134.9, 136.6, 136.8, 138.1, 147.5. 19 F NMR (CDCl₃) $^{\delta}$ 84.5 (relative to C₆F₆).
- 12 "The Chemistry of Organic Selenium and Tellurium Compounds," ed by S. Patai and Z. Rappoport, Wiley, New York (1986), Vol. 1 and (1987), Vol. 2.